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Abstract

Quality�of�service �QOS� requirements for applications in high�speed networks are typically speci�

�ed on an end�to�end basis� Mapping this end�to�end requirement to nodal requirements facilitates
providing QOS guarantees and simpli�es connection admission� In this paper� we evaluate strategies
for such local allocation of the end�to�end QOS� A QOS allocation policy is said to perform better
than another when the maximumnetwork load that it can support is greater� A major contribution
of this work is the development of a nodal metric that predicts the relative performance of QOS
allocation policies in a network setting� Computation of the nodal metric and direct evaluation of
allocation policy performance for two simple network models yield valuable insight into the choice
of allocation policies� Intuitively� one expects signi�cant di�erences in the performance of alloca�
tion policies when there are signi�cant imbalances in nodal resource capacities or tra�c loads� It
is found� however� that with the packet loss probability as the QOS metric� there is little di�erence
in the performance of allocation policies in the regime of applications with low loss requirements�
From a practical viewpoint� this suggests that a simple allocation policy may be adopted in this
scenario with only a small decrease in carried load with respect to an optimal policy� For applica�
tions which tolerate large packet loss or alternate QOS metrics� however� QOS allocation policies
di�er signi�cantly in their performance� Our results indicate that the development of 	optimal

QOS allocation policies is of interest in such cases�
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� Introduction

Current packet communication networks o�er users very little in terms of a guaranteed quality�of�
service beyond a 	best�e�ort
 delivery of information� If the goal of providing a variety of services
on a single integrated network is to become a reality� future networks will need to provide explicit
end�to�end QOS guarantees to subscribers�

A number of recent research e�orts have focussed on the problem of guaranteeing QOS� Some
of this work addresses the issue of local or nodal QOS guarantees� while the remainder considers

end�to�end guarantees� First� let us consider nodal guarantees� Guerin et al� �G��
� GG��� propose

the notion of equivalent capacity which is the capacity to be allocated to the connection at each
node in order to satisfy a nodal QOS requirement and depends in general on nodal resources such

as bu�er space� Nagarajan and Kurose �NK��� consider the issue of appropriate QOS metrics

for applications in high�speed networks and approaches to guaranteeing these metrics at the nodal

level � Woodru� and Kositpaiboon �WK��� demonstrate via simulation how nodal QOS measures

can be satis�ed� All of the aforementioned research e�orts assume that a nodal QOS requirement is
speci�ed� QOS requirements for applications are� however� often speci�ed on an end�to�end basis�
In order that any of these techniques be applicable� this end�to�end requirement must therefore be
mapped to nodal QOS requirements�

We next consider the issue of end�to�end QOS guarantees� Cruz �Cru�
� outlines the com�

putation of worst�case end�to�end delay bounds for sessions in arbitrary networks� Kurose �Kur���

outlines the computation of nodal performance bounds �on distributions of pertinent quantities such

as packet delay� on a per�session basis when the session tra�c is stochastically bounded over inter�

vals of time� This bounding technique also permits one to compute point�valued worst�case delay

bounds� Golestani �Gol��� also provides an worst�case end�to�end delay bound for sessions provided

a special stop�and�go service discipline is adopted at the network nodes� A straightforward appli�

cation of the proposed techniques �Kur��� Cru�
� in a connection admission algorithm will require

the algorithm to compute� at connection setup times� the end�to�end delay bounds for all a�ected
sessions on the new session�s route in order to ensure that no QOS guarantees for existing sessions
are violated upon admitting the new connection� This can be cumbersome and time�consuming
at best� The problem might be alleviated by apportioning the end�to�end guarantee locally for
each connection and then simply verifying that the local guarantee� rather than the end�to�end

guarantee� is still satis�ed� The research e�orts of �FV��� VHN��� adopt this approach� In all of

these approaches� a 	best
 possible guarantee is computed at each of the nodes for the new session
while satisfying local guarantees for existing sessions� The local guarantees are then aggregated
and the 	excess
 over the required QOS value for the new session is reassigned among the nodes�

However� neither of �FV��� VHN��� address in detail the assignment of the excess end�to�end QOS

to nodes� In �FV���� for example� the excess value is simply equally distributed among the nodes

along the source�destination path�

Thus the important and interesting problem of apportioning the end�to�end QOS values to
local nodes has been largely ignored in recent research e�orts� This issue of the allocation of the

end�to�end QOS is the primary focus of this paper� In �WN�
�� we addressed this issue of QOS

allocation under the assumption that nodal QOS guarantees are provided by explicitly allocating
resources to each connection at each node� In this paper� we consider a more realistic scenario
in which nodal resources are shared among connections� We consider policies for QOS allocation
which maximize network e�ciency� where network e�ciency is measured by the total number of






connections or the total tra�c load that can be supported by the network while still meeting all
QOS guarantees� When there is an imbalance in the network resulting in 	bottleneck
 nodes where

resources are scarce �and thus valuable�� we shall see that it pays to meet the required end�to�end

guarantees by requiring less stringent local guarantees at bottleneck nodes while compensating with
more stringent local guarantees at other nodes of the network� We also uncover� however� scenarios
where it does not pay signi�cantly to 	optimally
 allocate the end�to�end QOS even when there
are considerable imbalances in the network�

The remainder of this paper is organized as follows� Section � presents a formal statement of the
QOS allocation problem� Prior to addressing this QOS allocation problemwe discuss network tra�c
models in Section �� Section � examines certain fundamental aspects of the QOS allocation problem
presented in Section � and argues that it is feasible to arrive at conclusions about the performance
of QOS allocation policies in arbitrary networks by simply examining nodal performance� For
purposes of concreteness and to demonstrate the usefulness of the measure of allocation policy
e�ciency developed in section �� we consider two particular instances of the general network model
in Section �� with the packet loss probability as the QOS metric� In section �� we consider a
tandem set of queues� We then investigate the actual performance of allocation policies in the
context of this model� Next� in Section �� we consider a tandem set of queues again but now allow
for interfering tra�c� Section � considers� brie�y� the impact of alternate QOS metrics on QOS
allocation policies� Finally� Section � summarizes the paper and discusses open problems for future
research�

� A General QOS Allocation Problem

In this section� we formulate a general QOS allocation problem� While we do not attempt to solve
for allocation policy performance in this general model� we do consider two particular instances of
this general model in Sections � and �� Further� this general model will motivate our development
of an allocation policy performance metric in Section ��

Consider a communication network of V nodes labeled as 
� �� � � � � V � These nodes are taken to
include a set of source�destination pairs that communicate over �xed routes� We do not address
routing of connections� implicitly assuming instead that the route is determined a priori� We
denote by � the set of all routes in this network� The routes in this set will be denoted by
�i� i � 
� �� � � � �M where M is the total number of routes� Each route� �i� in turn is taken to be

a string of digits corresponding to the nodes �labels� that the particular route traverses�

Connection requests arrive at the source node of a source�destination pair with a speci�ed
end�to�end QOS criteria� denoted as Q� In this paper� we assume homogeneous connections� i�e��
identical tra�c characteristics and QOS criteria� Each connection is admitted or rejected by an

allocation �admission� policy� denoted by �� which guarantees the end�to�end QOS by assigning

fractions of the desired end�to�end QOS among the nodes of the connection� When M � 
� we
require allocation policies to maintain a certain load ratio among the di�erent routes of the network�

i�e�� we require that the allocation policy support a fraction p� �
P

��� p� � 
��� of the total number

of connections on path �� The above restriction on load ratios is introduced only to prevent the
allocation problem for M � 
 to degenerate into that for M � 
� For example� when M � 
 it

might be the case that the network load is maximized �when there is no restriction on load ratios�

if connections are permitted only on the path with relatively large resource capacities� i�e�� the
problem has reduced to the QOS allocation problem for this single path� We denote by q�i the
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locally allocated QOS guarantee at some node i � � of the end�to�end QOS on path � � �� Over
time� connections arrive and when accepted terminate after a �nite duration� In this paper� we
do not study this dynamic process� but� rather� study the best that each policy can achieve� for a
given policy and network� N� is the maximumnumber of connections admitted� More formally� our

interest will be in ascertaining N� such that ��q
�i

l � q�i

m � � � � � q�i

r � � Q� ��i� i � 
� �� � � � �M � where

���� denotes an arbitrary function that determines the end�to�end QOS given the local guarantees�
We assume in this paper that the QOS value� Q� is in general a scalar real�valued quantity� i�e�� we

exclude more sophisticated QOS metrics such as those considered in �NK���� Further� we assume

that the function ����� while arbitrary� is of a form which requires q�i � Q�

We do not delve into the details of how the local guarantees� q�i � determine the locally suppor�

table load and hence the network supportable load� N� � but will instead defer this discussion to
later sections when we consider speci�c network models and connection types� Our goal will be
to compare the di�erent policies based on N�� which measures how e�ciently the total network
resources are being used to satisfy the connection requests� In the rest of this paper� we refer to this

value �in a qualitative sense� of the total number of connections supportable under an allocation

policy as the performance of the allocation policy�

� Tra�c models

In this section� we describe two stochastic tra�c models that will be adopted in our investigation
of the QOS allocation problem�

The �rst model assumes that each source generates tra�c �packets� according to the classical

Poisson process and that the packet sizes are exponentially distributed� We will refer to this source
tra�c model as M
 and denote its average rate by �s�

The second model considers each source as a packet voice source� This standard model has as

its basic premise �see� e�g�� �DL��� HL��� SW��� NKT�
�� that an active voice source periodically

generates �xed length packets when a speaker is speaking �talkspurt� and otherwise remains idle�

We brie�y describe this model here� the reader is referred to the above references� in particular

�SW���� for additional details and discussion� The voice packetization period is assumed to be

�xed at 
� msec� and the talkspurt is assumed to contain a geometrically distributed number of

packets� with mean �� packets� The mean length of a talkspurt is thus ��� � ��� msec� The period
between talkspurts� known as the silence period and denoted by X� is assumed to be exponentially

distributed with a mean length of ��� � ��� msec�� The speech activity ratio� which is the fraction
of time that the voice source is active� is thus ����
 and each source generates on the average ��
packets every second� Given the above model� the interarrival times between packets generated by

a single source form a renewal process� With probability 
���� the interarrival time is 
� msec� and

with probability �
���� the interarrival time is 
� �X msec� �SW���� We will refer to this source

model as M��

In this paper� we �nd an alternate �uid description of the M� source more amenable to analysis�
It is assumed that the source� when active� transmits information at an uniform rate rather than
as discrete packets� The rate of source transmission will be speci�ed in bits per second and hence
also referred to as the bit rate� It is then meaningful to talk about the peak� mean and variance of

the bit rate� We will denote these quantities by 	� m and 
� respectively� For the aforementioned
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M� source parameter values� we can compute these quantities to be

m � 

���
 Kbps

	 � ���� Kbps


 � 
����� Kbps� �
�

� QOS criteria and Optimal QOS allocation

In this section� we develop a strategy for addressing the performance of QOS allocation policies
in the setting of Section � by focussing on an isolated node� Such a strategy obviates the need
to analyze the performance of a given allocation policy in myriad network topologies with varied
connection routing patterns� A useful �rst step in developing such a strategy is to better understand
the mechanics of QOS allocation and its in�uence on the load that can be supported in a network�

Consider �rst a simple QOS allocation policy which we will refer to as the Equal Allocation

�EQ� policy �see also Sections � and ��� The policy simply requires that the burden of providing an

end�to�end QOS be delegated equally to all of the nodes traversed by the connection� For example�

if the QOS metric is end�to�end packet delay �d�� then each node on the source�destination path

of� say� n hops might be required to provide a delay guarantee smaller than d�n� This local value

of the QOS metric completely determines the tra�c load that can be supported at the node and
hence in the network� It is intuitively clear� however� that this is not the best possible strategy
when there is an imbalance in the capabilities of the nodes� For example� it may be advantageous to
allocate more of the end�to�end delay to the nodes with smaller available bandwidths� This might
enable one to support much larger tra�c loads than with the EQ policy� It hence appears useful
to compute some measure of the gain in supportable tra�c load due to relaxed QOS requirements
at the node� If this gain is large� one might expect a QOS allocation policy that allocates a large
fraction of the end�to�end QOS to the node with small resource capacities and a small fraction
to nodes with large capacities to perform considerably better than a naive policy such as the EQ
policy� Otherwise� a simple policy such as the EQ Policy may su�ce� In the following� we propose
an useful nodal metric and outline its computation�

We de�ne

q � Gi�N�Ri�� A real�valued function for some network node i that indicates the supportable QOS�

q� �i�e�� the realized performance� at that node while carrying a load ofN sources at that node�

Ri denotes nodal resources and maybe a multi�component vector including� for example� the

bandwidth and bu�er space� The notation suggests that Gi��� is a function of two variables�
In this paper� however� we treat Ri as a known and �xed parameter� Its presence in the

notation is merely to emphasize the dependence of Gi��� on Ri� Last� we assume in this paper

that Gi��� is a convex function of N �

Note that while N is an integer�valued quantity� we will treat it� for convenience� as a real�valued
quantity in the rest of this paper� An alternate and more natural view is to consider a function

Fi��� such that N �

� Fi�q� Ri�� i�e�� N
�

is the supportable load at node i when it is required to

meet a QOS criteria of q� We will assume in this paper that Gi��� is a strictly increasing function
of N and hence has a well�de�ned inverse function G��

i ���� We will then take Fi��� � G��
i ��� in the
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rest of this paper� Finally� we abbreviate the above notation to q � G�N� in the following analysis

since only q and N will be of interest�

We are now in a position to formally state our requirements� Consider a particular network
node in isolation� Let q be the locally apportioned value of a end�to�end QOS requirement Q under

a certain policy �say the EQ policy�� Given our earlier discussion� the locally supportable load at

the node is now N � F �q�� We are now interested in determining the new value of the supportable

load� N ��N � F �q��q�� when the local portion of the end�to�end QOS requirement is changed

from q to q��q� In particular� we are interested in determining �N�N � the relative gain in tra�c

load due to a change in the nodal QOS requirement� Since G�N� is a convex function of N � we

have

�G�N� � G�N � �N��G�N��

� G�N� �
dG�N�

dN
�N � G�N��

� dG�N�

dN
�N ���

or alternatively�

�N

N
� �G�N�

dN�N

dG�N�

� �G�N�

G�N�

dN�N

dG�N��G�N�

�  �q� R�
�G�N�

G�N�
���

where

 �q� R� � dN�N

dG�N��G�N�
jN�G���q�R	 �

G�N�

N




dG�N��dN
jN�G���q�R	 ���

will be referred to as the Relative Gain Ratio �RGR� and depends� in general� on nodal resources

R and the local QOS value q� Note that the RGR is dimensionless� i�e�� it is independent of the

units of G���� We could have derived the RGR by considering F ��� rather than G��� and in this
case we require that F �q� is concave in q and the RGR is then

 �q� R� � dF �q��F �q�

dq�q
�

q

F �q�

dF �q�

dq
� ���

The choice of the above two expressions to compute the RGR depends on which of G��� or F ��� is
available in closed�form�

We now remark on some important properties of the RGR� Note that for �G�N��G�N� � 
�

i�e�� a unit change �increase� in QOS� the gain in tra�c load is bounded by the value of the RGR

alone� In other words� the value of the RGR is a bound on the relative gain in tra�c load for a

unit increase �relaxation� in QOS� Further� for small values of �q� the above inequality approaches

an equality� Hence� large values of the RGR indicate a potential for large gains in tra�c load
by judicious local allocation of the end�to�end QOS� On the other hand� small values of the RGR

�



suggest small di�erences in the performance of allocation policies� In this latter case� a simple
allocation policy would be su�cient� The RGR is thus a useful indicator of allocation policy
performance in a network scenario even though it is computed on a nodal basis only� We next
compute the RGR for some sample QOS metrics and source tra�c models�

RGR with the loss metric

Consider identical M
 sources at a node with a �nite bu�er space K and a 	�rst�come��rst�

served
 �FCFS� service discipline� The QOS metric is taken to be the packet loss probability�

Hence� we have the M�M�
�K queueing model for the node and the packet loss probability is�

q � G��� � �
� ���K��
� �K���� ���

where� as usual� � � N�s��� is the tra�c intensity� In �NT� we show that G��� is convex for

� � ��� 
�� K � �� which is typically a regime of practical interest�
Now dN�N � d��� and we can compute the RGR in this case as�

 �q�K� �
d���

dG����G���
j��G���q�K	� ���

Hence� we have

 �q�K� �
�
� ���
� �K���

�K�
� ��� ��
� �K��

�
�
� G���q�K���
� �G���q�K��K���

�K�
�G���q�K��� G���q�K��
� �G���q�K��K��
� ���

Figure 
 shows that the RGR metric is large for small values of the bu�er size and large loss QOS

values and small otherwise� Note that as q � � for a �xed value of K� RGR� 
�K i�e�� the RGR

value for small values of the loss QOS requirement is approximately inversely proportional to the
bu�er capacity at the node�

Figure � illustrates the behaviour of the RGR for the M�M�
��� queue in an alternate intui�

tively appealing fashion� Since Figure � is plotted on a log�log scale� identically sized intervals on

either axis represent identical relative increments� e�g�� �Q��Q� � �Q�Q where Q � �	 
��
� and
Q� � � 	 
��
�� Hence� Figure � shows that for identical relative increments �relaxation� in the
loss the relative gain in load is larger at the higher loss value �Q���

The RGR values for the M�M�
�K queue hence indicate that only in the regime of large loss

QOS values and small values of the bu�er capacity� can one expect an optimal policy to perform
signi�cantly better than a simple policy such as the EQ policy� We will observe this in the context
of network models in Sections � and ��

We now consider a more realistic model of a node in a high�speed network in which the input
tra�c stream to the node is a superposition of on�o� packet voice sources� i�e�� M� sources� and
the service discipline is FCFS� The analysis of the voice sources multiplexer is rather complex

�NKT�
� B��
� HL��� SW��� AMS���� only approximate numerical techniques are available and�

in general� no closed�form expression G��� is available for this realistic scenario� Hence� we adopt the

�
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approximate analysis of �G��
� GG��� in which closed�form expressions are developed for the so�

called equivalent capacity � the amount of bandwidth needed to support a given QOS criteria� These

closed�form expressions may then be employed in determining the RGR� The work of �G��
� GG���

considers two di�erent approximations� The reader is referred to �G��
� GG��� NKT��� for details�

We provide a general outline of the techniques in the following�

The �rst approximation in �G��
� GG��� is based on modeling the aggregate bit rate of the

superposition of sources as a Gaussian distributed random variable whose mean and variance are

easily determined from the individual source characteristics� The reader may refer to �NKT��� for

a more detailed discussion of the merits of such an approximation� The packet loss probability�

is taken to be the QOS metric and it is assumed that loss occurs whenever the aggregate bit rate
exceeds the channel capacity� The equivalent capacity is then taken to be that real value beyond
which the tail of the Gaussian distribution has mass below the required QOS criteria�

We assume N identical M� sources being multiplexed onto a link of capacity C units� The �rst

approximation in �G��
� GG��� yields the following relation between N � the number of sources�

and q� the loss probability to be satis�ed for the sources�

C � Nm� �
�
p
N
 ���

where

�
�

�
q
��ln�q�� ln����� �
��

The reader is referred to �NKT��� for some restrictions under which the above relation holds�

Replacing N by x� in the above equation� we obtain a quadratic in x which is solved to yield

x �
p
N �

���


 �
q
���
�� � �mC

�m
�

�

It can be easily shown that the alternate solution to the quadratic equation is non�positive and
hence is not a valid solution� The reader may now recognize that we have an expression of the form

N � F �q� C�� It is shown in �NKT��� that G�N�C� is convex in N for N � L�C�m� 
� where

L�C�m� 
� � �
�

m

�

s
�



m
�� �

C

m
��� �
��

The RGR for this nodal model may then be computed as

 �q� C� �
dF �q��F �q�

dq�q

�
�dx�x

dq�q

�
�q

x

dx

dq
�
��

�The authors 
G���� GG��� consider the bu�er over�ow probability and not the packet loss probability but it is

believed that the two quantities might be close for the system in consideration 
Mit� �see also 
SW����

�



where

dx

dq
� �

�

�mq��

���
 � �
�


q
���


�� � �mC
�� �
��

Simplifying� one obtains

 �q� C� �
�
���q

��
�


�� � �mC
� �
��

Figures � shows the RGR for this model as a function of the link capacity and the QOS requirement
It can be seen that the values of the RGR are relatively low for high link capacities and low loss
values� a regime of interest in future high�speed networks� This can be also inferred from the

equation for the RGR above� since  �q� C�� � as C �
 or q � �� Note that this does not imply

that the relative gain in tra�c load also approaches zero� it depends on the value of �q�q as well�

The second approximation in Guerin et al� �G��
� GG��� relies on the �uid��ow model of

�AMS���� An expression for the equivalent capacity of an on�o� �uid source �G��
� Equation� �� is

developed by considering the asymptotic behaviour of the tail of the queue�occupancy distribution�
While Guerin et al� derive expressions for the equivalent capacity of a �uid source using heuristic

�intuitive� arguments� a more rigorous derivation of identical expressions appears in �EM� GH�
��

the reader is referred to these papers for details�

Consider identical M� sources being superposed onto a link of capacity C units and in�nite
queueing space� The number of �uid sources� N � that can be supported while meeting a bu�er

over�ow criteria �as previously� this may be considered to be an approximation for the packet loss

probability�� P �B � x� � q� where B denotes the queue occupancy is

N � F ��q� x�� C� �
C

��
�
�
��

where ��
� is the equivalent capacity for the single �uid M� source and is given as �G��
� EM� GH�
�

��
� �

	 � �� ��

p
�
	 � �� ��� � ���

�

�
��

and 
 � loge�q��x� The RGR for this model can then be easily derived and shown to be

 �q� x� �
�d��
��d

x��
�

� �
��

It can be shown that F ��� is a convex function of q and hence the RGR in this case is a lower bound
for the relative gain in tra�c load for unit gain �increase� in QOS� For small values of �q� however�

one can interpret the RGR as a good approximation for the relative gain �see earlier discussion on

properties of the RGR��

Interestingly� the RGR in this case is independent of the link capacity �C�� Figure � shows the

RGR for this model and it can be seen that the values are relatively low with a maximum RGR

of about �! for a loss probability of 
	 
��
� and x � �� kbits� Finally� the RGR values for the
above �uid approximation and the earlier Gaussian approximation for the voice multiplexer suggest
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that the tra�c load supportable by a sophisticated QOS allocation policy in a network with voice
tra�c may not be very large compared to that by a simple QOS allocation policy�

In subsequent sections� we present two network models and evaluate the e�ciency of QOS
allocation policies for this model� The results for these models help serve as validation of the RGR
as a potentially useful metric for evaluating QOS allocation policies�

� General Model

In this section� we present a simple network model for which we study allocation policy performance�
This simple model is a special case of the more general model presented in Section ��

Figure � illustrates our model network consisting of a single source�destination pair of nodes
between which connections are setup� The number of nodes in this network is V � h and these

nodes are labeled 
� �� � � � � h� Since there is only a single route �path� in this model� we will drop
the route notation � in this section� This simple model captures a number of features of the
general problem posed in Section �� and allows us to solve exactly for the number of connections
supportable under various policies�

We will assume in our network models that a connection�s tra�c characteristics are una�ected
as the tra�c travels through the network� For example� packet loss at upstream nodes may result
in downstream nodes receiving tra�c whose characteristics are very di�erent from those at the
network 	edge
� We ignore any such changes in connection characteristics� One exception is the

case of the M
 source where we thin the source as it proceeds through the network �see also

Section ����� The assumption may be justi�ed on the basis of the fact that the small packet delays

in future high�speed networks and projected network operation under conditions of low loss will
result in near preservation of connection tra�c characteristics as it proceeds through the network

�O��
� �see also Kelly �Kel�
� pp� 
����

We �rst consider an equal QOS allocation policy �EQ� which assigns an equal amount of the

end�to�end QOS for a connection to each node� i�e�� qi � qj � q �i� j� The value of q is determined
by the relation

��q�� q�� � � � � qh� � Q� �
��

The maximum number of connections supportable under the EQ policy is then�

Neq � Min��i�h Fi�q� Ri�� ����

For this network model� we also determine the the allocation of qis that maximize the number

of connections� We will refer to the �virtual� policy corresponding to this optimal allocation as the

optimal policy �OPT� and the number of connections supportable under it� Nopt� as the optimal

number of connections� We can formulate this problem of determining the optimal number of

connections as �the reader is referred to �NKT��� for an alternate but equivalent formulation��

Maximize N

Subject to ��G��N�R��� G��N�R��� � � � � Gh�N�Rh�� � Q
��
�

For the metrics of interest in this paper� it can be shown that the optimal solution is �NKT���

Nopt � fN � ��� � �� � Qg� ����







��� Upper Bound for Relative Policy Performance

In Section �� we employed the RGR to make qualitative predictions regarding the performance of
QOS allocation policies� In this section� we describe how the RGR may be employed to compute a
quantitative upper bound for the relative performance of any QOS allocation policy with respect to
the EQ policy� We compute this bound in the context of the network model of the previous section�
Typically� analytical bounds are useful when exact analytical computations are either intractable
or considerably complex� Our purpose in computing a bound is� however� di�erent� We will �rst
seek to relate the RGR� via the bound� to the relative performance of allocation policies in this
network model� Second� we will see that the upper bound is indeed realizable when there is a single
	bottleneck
 node in the tandem model� i�e�� that all nodes except the bottleneck have in�nite
resources� This bound� thus� represents the highest possible relative gain realizable in the given
model with respect to the EQ allocation policy�

Consider �rst an arbitrary allocation policy� �� that assigns qi of the end�to�end QOS� Q� to
node i� The maximum number of connections supportable under this policy is then

N� � Min��i�h Fi�qi� Ri�� ����

We are now interested in the maximum relative improvement �over policy �� in supportable load

that can be obtained� Since the maximum QOS that can be allocated to any node is bounded by
Q� the relative improvement is bounded by

B� �
Min��i�h Fi�Q�Ri��N�

N�

� ����

Note that no policy that realizes this upper bound may exist� However� when the resource capacities
at all nodes except for a single bottleneck node are in�nite� the optimal policy will allocate all of
the end�to�end QOS to the bottleneck node and the above upper bound will indeed be realized�

Alternatively� the above upper bound can be computed based on our earlier RGR computation�
This will establish a more direct relationship between the performance of QOS allocation policies
in 	real
 networks and the nodal RGR value� Note that

Fi�Q�Ri�� Fi�qi� Ri�

Fi�qi� Ri�
�  �qi� Ri�

Q� qi
qi

����

when G��� is a convex function� Hence

Fi�Q�Ri� � Fi�qi� Ri� �qi� Ri�
Q� qi
qi

� Fi�qi� Ri�� ����

Substituting the above in equation ���� yields a new upper bound� B�� based on the RGR value�

In the rest of this paper� we refer to the bound in equation ���� as the non�RGR�based bound and

the above as the RGR�based bound� Finally� we note that for either bound we could choose an

arbitrary node rather than minimizing over all nodes as in equation ����� this would yield a looser

upper bound�
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��� Allocating the loss QOS metric

In this section� we take the QOS metric to be the packet loss probability and solve for the maximum
number of connections supportable under the EQ and OPT allocation policies�

Before proceeding to the analysis� we consider some modi�cation of the general notation of
Section � for the particular QOS metric and models considered in this section� We also outline two
of the assumptions used in the analysis� We denote the end�to�end loss QOS requirement as Q � b�
Further� we denote by �i and ki the nodal bandwidth and bu�er capacity at node i respectively�

Note that Ri � ��i� ki� is a multi�component vector in this case�

For the loss metric� we consider both the M
 and M� source models for the source tra�c� We
assume� for simplicity� that the loss processes at the nodes are independent of each other� We also
assume� as noted earlier� that a M
 source remains a M
 source in the interior of the network�
However� we thin the M
 source in accordance with the losses su�ered at the respective nodes

as it proceeds through the network �SR����� This thinning is not possible for the M� source in

any reasonable fashion� i�e�� without altering the source model itself� and hence the M� source will
retain its exact characteristics as it proceeds through the network� We conjecture that� for the
generally low loss probabilities of practical interest� these assumptions will not seriously impact the
qualitative nature of the following results�

For both the M
 and M� models�Neq and Nopt can be easily determined as in section �� For the

M
 model� however� it is simpler to maximize the tra�c intensity than the number of connections

�see �NKT����� For the case of M
 source thinning� the reader is referred to �NKT��� for details of

additional considerations�

����� Poisson tra	c model� Results

We now consider several numerical examples to gain further insight into the actual performance
of the EQ and OPT allocation policies when the QOS metric is the packet loss probability� We
discuss allocation policy performance primarily for the case of no thinning of the sources� The
�gures� however� also plot policy performance for the case of source thinning� We notice that there
is no great di�erence in allocation policy performance when we account for thinning and when we

do not �at least for small end�to�end loss QOS values�� Then we compute the upper bound for

relative policy performance� We take �s � 
 in all examples�

Two�hop �h � �� tandem queues� No thinning

We �rst assume that both nodes have the same bu�er capacity� k� � k� � k but that the
bandwidths at the two nodes are �� � 
��� and �� � ���� units respectively� The relative
di�erence in the performance of the two policies is shown in Figure �� It can be seen that the
di�erence between the EQ and OPT policies is not that signi�cant� It can be� however� seen that
the two policies begin to di�er signi�cantly in performance as the end�to�end loss grows in value
or as the bu�er capacity decreases� It is interesting to note the generally similar performance of
the two policies for low loss probabilities in spite of a 
 � � ratio of available bandwidth at the
two nodes� When there is such a signi�cant imbalance in resources in the network one might have
expected a naive policy such as the EQ policy to perform considerably worse�

We next consider the case that both nodes have the same link capacity but di�erent bu�er
capacities� Speci�cally� we set k� � �� and allow k� to take on di�erent values� The link capacity
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End�to�End Loss �b� Percent allotted to bottleneck node �OPT�
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�����
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� �
��



	
��
� �����

Table 
� Fraction of end�to�end loss allocated to bottleneck node in OPT policy

at both nodes is assumed to be 
��� units� Figure � shows the absolute performance of the two
policies and Figure � the relative gain� It can be seen that the relative gain increases �rst and then
decreases� Table 
 shows the fraction of the end�to�end QOS assigned to the bottleneck node for
this example� The table indicates that the imbalance in bu�er space is not large enough for the

OPT policy to assign a large share of the end�to�end loss �for all loss QOS values� to the bottleneck

node and signi�cantly improve over the EQ policy performance�

Five�hop �h � �� tandem queues� No thinning

Figure 
� shows the relative performance of the EQ and OPT policies for the �ve�hop network
model when we do not account for upstream losses� We see that the relative gains in carried load�

in general� are somewhat higher than for the two�hop models� the gains being of the order of ���!
in the �ve�hop case as compared to the �� �! gains in the two�hop case�

Upper bound for relative policy performance

As discussed in the previous section� we can compute upper bounds for the relative gain in
load of any policy over the EQ policy� First� consider the RGR�based bound� The upper bound
for the above numerical examples are shown in Figures �� � and 
� along with the actual relative
gain of the optimal policy over the EQ policy� The plus sign on the curves for the upper bound

re�ects a constraint on the validity of the upper bound� i�e�� the upper bound does not hold �in a

theoretical sense� to the right of the plus sign on the curves� The fact that the upper bound curve

does lie above the curve for the actual gain to the right of the plus sign is merely fortuitous� The
constraint arises due to the fact that the loss probability function is not entirely convex with respect

to the number of connections �see �NT� NKT����� The following are two noteworthy features of the

computed upper bound�

� The upper bound values are relatively small� i�e�� the relative gain in tra�c load for any QOS
allocation policy over the EQ policy� even in the worst of scenarios �for the EQ policy�� is

relatively small� This is a direct consequence of the low RGR values for this model�

� The relative gain in tra�c load of the OPT policy over the EQ policy is� surprisingly� close to
the upper bound in Figures � and 
� even though resources imbalances are not signi�cantly

large �non�in�nite�� The exception is� however� Figure � �see earlier discussion and Table 
��

In summary� we have seen that for the M
 model the OPT QOS loss allocation policy does
not signi�cantly outperform the EQ policy in a regime of practical interest� the result conforms to


�



N R1 R R R R2 3 h−1 h

Q

Figure �� The tandem network model
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our predictions in Section �� However� we do observe improvement in the gains in tra�c load for
the OPT policy with an increase in the number of hops in the source�destination path� Also� an
imbalance in bu�er capacities appears less detrimental to the performance of the EQ policy than

an imbalance in bandwidths at the nodes of the network� Last� we observed in �NKT��� that the

OPT policy does somewhat better than the EQ policy when the bottleneck node is closer to the
head of the tandem queue than when it is closer to the tail� We now move on to consider the voice
tra�c model with the same loss QOS metric�

����� Voice tra	c model� Results

We consider the case of h � �� Figure 

 and 
� show the absolute and relative performance of
the EQ and OPT QOS allocation policies for this tra�c model� It can be seen that the relative

gains are relatively low � in the order of � � 
�! for this example� Also� the gain increases with
increasing values of the end�to�end loss� which is as expected from the RGR values computed in
section ��

Finally� we remark on the behavior of the relative gain with increasing number of hops� We
noted in the �ve�hop Poisson model above that the relative gain was somewhat larger than in
the two�hop case� It is hence of interest to determine the e�ect of the number of hops on the

relative gain over the EQ policy� It can be easily shown that the bound �equation ����� on the

relative gain approaches in�nity as the number of hops approaches in�nity for a �xed end�to�end
loss probability� Let q be the nodal allocation under the EQ policy� Then as h � 
� we have
q � �� We now have Neq � � and hence B� �
� Since the upper bound is realizable by the OPT
policy �see Section ��
� when all nodes except one �the bottleneck� have in�nitely large amounts

of resources� we conclude that the OPT policy will perform in�nitely better than the EQ policy in
this asymptotic regime with a single bottleneck�

� An Alternate Network Model

In Section �� we considered a tandem queueing model to investigate the performance of various
allocation policies� However� the model was rather simple and did not account for the e�ects of
cross tra�c prevalent in general networks� We consider here such a tandem queueing model with
cross tra�c� While the earlier tandem model explored the e�ect of physical resource imbalances
on allocation policy performance� our focus here is on the e�ect of uneven tra�c loads at network
nodes� Since load imbalances can be viewed as resource imbalances� i�e�� the node with a higher
load may be thought of as a node with a load identical to other nodes but with smaller amounts of
physical resources� we expect the qualitative nature of our earlier results to also apply to this more
general model� Indeed� we will observe that the performance of various allocation policies for this
model also conform to the general trends predicted by the RGR computation of Section ��

Figure 
� shows the alternate network model to be considered in this section� We generally
adopt the notation of previous sections with minor changes� One minor change is necessary when
connections traveling over two di�erent paths traverse a node common to the two paths but do
not share the resources at that node� For example� in Figure 
� this would the case for node
l� In such cases� we distinguish the nodal resources allocated to connections on one path from

those on another path by primed quantities� i�e�� Ri and R
�

i respectively� The solid nodal circles in

Figure � indicate nodes at which resources are being totally shared among the connections on the
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Figure 
�� A tandem network model with cross tra�c

two di�erent paths� We are now ready to evaluate the performance of the EQ and OPT policies
for this model�

Equal QOS Allocation Policy

As previously� we require that each node support an equal portion of the end�to�end QOS Q�

i�e�� qi � qj � q �say�� �i� j� De�ne

Ni �

���������
��������

Fi�q� Ri� k � i � l � 
�
Fi�q�Ri	
��p h� 
 � i � �h� �l� k � 
��

Fi�q�Ri	
p


 � i � k � 
� l � i � h�

Min�Fl�q�Rl	
p

�
Fl�q�R

�

l
	

��p � i � l�

Fi�q� Ri� k � i � l�

����

where Ni is the total number of connections �including those on paths �� and ��� that can be

supported in the network given the constraints at node i� i�e�� a local QOS allocation of q and the
fraction

P
��i�� p� of the total number of connections to be supported at node i� The number of

connections that can be supported by the EQ policy is then

Neq � Min�N�� N�� � � � � N�h��l�k��	�� ����

Optimal QOS Allocation Policy

To solve for the optimal allocation policy� we need to �nd the allocations qi that maximize the
total number of connections N � More rigorously� the optimal policy can be formulated as

Maximize N

Subject to ���G��pN�� � � � � Gk�N�� � � � � Gl�pN�� � � � � Gh�pN�� � Q��

and ���Gh����
� p�N�� � � � � Gk�N�� � � � � Gl��
� p�N�� � � � � G�h��l�k��	��
� p�N�� � Q��

����

��



Note that we have allowed for di�erent QOS values on the two paths� In the examples� however�
we will consider only identical values of QOS on the two paths� This is because the number
of connections that can be supported at a node with FCFS service is constrained by the most
stringent QOS requirement of the connections� The problem of multiple QOS classes is� hence�

not very interesting in the context of our nodal model �where we assume FCFS service�� For the

metrics of interest in this paper� the optimal solution for the above problem is �see �NKT����

Nopt � Min�N�� N��� ����

where N� � fN � ���� � �� � Q�g and N� � fN � ���� � �� � Q�g�

��� Allocating the loss QOS metric� Results

We consider in turn the source models and QOS metrics of previous sections� Our focus in these

examples will be more on the e�ect of imbalances in loading �i�e�� disparate p�s� than resource

imbalances� All of the examples will be four�hop �on each of the two paths� with k � � and l � ��

We denote the two paths by �� and �� and set p�� � p and p�� � 
 � p� We �rst consider M


sources and a network of M�M�
�K queues� Subsequently� we consider M� sources and voice

multiplexers�

The nodal bandwidths are taken to be �i � 
���� �i� The bu�er capacities at the nodes are
taken to be ki � ��� �i� Further� ��l � 
��� and k�l � ��� We hence have identical resources at

all nodes� The loading factor is �xed at p � ���� Figure 
� shows the relative performance of the
EQ and OPT policies in this case� We see again that the relative gain values are in conformance
to that predicted by the RGR for this model� We next examine the e�ect of loading with the

end�to�end QOS value �xed at �	
��
�� Figure 
� shows the relative performance of the policies�
The piecewise continuous nature of the curve is due to the computation of policy performance for
a �nite set of p values� We observe that the gain is generally very insensitive to load imbalances

but a gain in load of about �� �! is available even with identical nodal resources�

The surprising result in Figure 
� is that the OPT policy performs better than the EQ policy
more when there is equal loading on the two paths than when there is uneven loading on the

two paths� A detailed explanation is provided in �NKT���� The essence of the argument is that

the nodal load imbalances on the 	bottleneck
 path� when the path load imbalances are large�
are small and vice�versa� Since nodal resources are identical� the OPT and EQ policies perform
similarly when path load imbalances are large�

Finally� we consider the M� source� All nodal bandwidths are taken to be identical and corre�
spond to T
 links� The loading factor is �xed at p � ���� Figure 
� shows the relative performance
of the policies in this case� We see again that the relative gain values are in conformance to that
predicted by the RGR for this model� We next examine the e�ect of loading with the end�to�end

QOS value �xed again at �	
��
�� Figure 
� shows the relative performance of the policies� We
observe that the gain is generally very insensitive to load imbalances but there is a gain of about

�� �! to be had even with identical nodal resources� Also� note that the general performance of
allocation policies in this example is very similar to the previous example when we considered the
M
 source�
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	 Alternate QOS metrics

The previous sections have exclusively focussed on the packet loss probability as the QOS metric�
While the packet loss probability is the QOS metric of interest for future high�speed networks�
we brie�y digress to consider one other QOS metric� the average packet delay� We see in this
case that the OPT policy signi�cantly outperforms the EQ policy in the regime of low delay QOS
requirements in contrast to our earlier results for the loss metric�

The computation of the RGR for the average delay QOS metric and the M
 source model
and the performance of the EQ and OPT allocation policies for the network models of Section �

and � is outlined in �NKT���� We present only a sample computation here� Consider the tandem

network model of Section � with �ve hops� i�e�� h � �� Let the link bandwidths at the nodes be

���� 

��� 
���� 
��� and 
��� units and �s � 
 unit respectively� Figure 
� shows the relative
performance of the EQ and OPT allocation policies� It can be seen� as expected� that large gains

in carried load �over the EQ policy� are available for small delay QOS values while for large delay

values only small gains are available� Recall that in the case of the loss QOS metric� the OPT
policy outperformed the EQ policy only when the loss QOS values were large� We also �nd� in
the context of the network model with cross tra�c� that the relative gain of the OPT policy over
the EQ policy is highly sensitive to the loading factor� This is again in contrast to the relative
insensitivity of the performance of loss QOS allocation policies to the loading factor� Finally� the
RGR values� in this case� accurately predict� as previously� the performance of the EQ and OPT
policies�
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Figure 
�� Relative performance of EQ and OPT delay QOS allocation policies as a function of
delay requirement � Five�hop model with M
 sources
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 Conclusion

In this paper� we have investigated in detail the allocation of the end�to�end quality�of�service
to individual network nodes� We considered two di�erent QOS metrics and tra�c models� The
primary contribution in this work was to present the RGR as a useful nodal metric for predicting the
performance of QOS allocation policies in arbitrary networks� The RGR itself was formulated by
appealing to certain fundamental aspects of the allocation problem� Subsequently� it was veri�ed
to be a useful metric by investigating the performance of two QOS allocation policies in two
simple network models� From a practical standpoint� the following insights into the QOS allocation
problem were gained�

� The relative performance of QOS allocation policies is heavily dependent on the particular
QOS metric�

� When the average delay is the QOS metric of interest� judicious allocation of the end�to�end
QOS yields substantial improvements in carried load over naive allocation policies in the
regime of connections with stringent delay requirements�

� When the loss probability is the QOS metric of interest� only small di�erences in the per�
formance of loss allocation policies were observed in the regime of connections with low loss
requirements�

� The relative performance of allocation policies was found to depend to a lesser extent� in
comparison to the dependence on the particular QOS metric and its value� on the particular
resources that were in imbalance� the number of hops on the source�destination route� the
position of the bottleneck node on the source�destination path� the interaction between load
and resource imbalances� etc���

� The relative performance of QOS allocation policies is of interest only when there are resource
or load imbalances in the network�

A number of open interesting issues remain for future research� The complexity of the gene�
ral problem necessitated a number of simplifying assumptions� One of particular note is that of
unmodi�ed connection characteristics in the network models of this paper� While we argued that
this might be reasonable for future gigabit networks� it is of interest to evaluate the e�ects of this

assumption on the conclusions of this paper in a 	non�asymptotic
 low�speed regime �preliminary

work �Y�� appears to indicate that the approximation holds� reasonably� in this scenario as well��

In this context� it is useful to view the network nodes as having di�erent characterizations� G����
for their performance� Hence� these nodes might have non�identical RGRs for identical parameter
values� However� the value of the RGR at each node can still be expected to give a useful indication
of the expected gain in load at that node due to lower QOS requirements�

The above discussion also suggests a dynamic scheme for QOS allocation� Note that the analysis
in this paper considers only a static QOS allocation problem where connection characteristics and
routing patterns are known a priori � However� it is a dynamic scheme which is of ultimate interest
since QOS allocation decisions have to be made in real�time at connection set�up instants� One
possible approach is to partition the end�to�end QOS among the nodes on the source�destination
path in accordance to the current tra�c load� available resources and the corresponding RGR value

�for that load and resources�� While the former two quantities represent the operating point of the

��



node� the RGR value represents the sensitivity of that point to changes in the QOS allocation�
Hence� for example� when two nodes have identical operating points� the node with the larger RGR

value will be assigned a larger �looser� portion of the end�to�end QOS� The details of such a scheme

remain a topic for further investigation�

Other areas for future research include considering alternate source models such as the �
� ��

characterization of Cruz �Cru�
�� Finally� similar techniques �in particular the RGR� may be applied

to a slightly di�erent allocation problem discussed in �SR���� that considers the local allocation of

an end�to�end deadline for real�time applications�
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